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Learning 
In this Workbook you will learn about sequences and series. You will learn about arithmetic
and geometric series and also about infinite series. You will learn how to test  the for the 
convergence of an infinite series. You will then learn about power series, in particular you
will study the binomial series. Finally you will apply your knowledge of power series 
to the process of finding series expansions of functions of a single variable. You will be 
able to find the Maclaurin and Taylor series expansions of simple functions about a point 
of interest. 
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Sequences and Series
�
�

�
�16.1

Introduction
In this Section we develop the ground work for later Sections on infinite series and on power series.
We begin with simple sequences of numbers and with finite series of numbers. We introduce the
summation notation for the description of series. Finally, we consider arithmetic and geometric series
and obtain expressions for the sum of n terms of both types of series.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• understand and be able to use the basic rules
of algebra

• be able to find limits of algebraic expressions'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• check if a sequence of numbers is
convergent

• use the summation notation to specify
series

• recognise arithmetic and geometric series and
find their sums
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1. Introduction
A sequence is any succession of numbers. For example the sequence

1, 1, 2, 3, 5, 8, . . .

which is known as the Fibonacci sequence, is formed by adding two consecutive terms together to
obtain the next term. The numbers in this sequence continually increase without bound and we say
this sequence diverges. An example of a convergent sequence is the harmonic sequence

1,
1

2
,

1

3
,

1

4
, . . .

Here we see the magnitude of these numbers continually decrease and it is obvious that the sequence
converges to the number zero. The related alternating harmonic sequence

1, −1

2
,

1

3
, −1

4
, . . .

is also convergent to the number zero. Whether or not a sequence is convergent is often easy to
deduce by graphing the individual terms. The diagrams in Figure 1 show how the individual terms
of the harmonic and alternating harmonic series behave as the number of terms increase.

term in sequence

1

1/2
1/3

1/4
1 2 3 4 5

harmonic

term in sequence

1

1/3

− 1/2

− 1/4 1 2 3 4 5

alternating harmonicalternating harmonic

Figure 1

Graph the sequence:

1, −1, 1, −1, . . .

Is this convergent?

Your solution
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Answer

term in sequence

1

−1

1 2 3 4 5

Not convergent.

The terms in the sequence do not converge to a particular value. The value oscillates.

A general sequence is denoted by

a1, a2, . . . , an, . . .
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Now find the limit of an as n increases:

Your solution

Answer

n + 2

n(n + 1)
=

1 +
2

n
n + 1

 → 1

n + 1
→ 0 as n increases

Hence the sequence is convergent.

2. Arithmetic and geometric progressions
Consider the sequences:

1, 4, 7, 10, . . . and 3, 1, −1, −3, . . .

In both, any particular term is obtained from the previous term by the addition of a constant value (3
and −2 respectively). Each of these sequences are said to be an arithmetic sequence or arithmetic
progression and has general form:

a, a + d, a + 2d, a + 3d, . . . , a + (n − 1)d, . . .

in which a, d are given numbers. In the first example above a = 1, d = 3 whereas, in the second
example, a = 3, d = −2. The difference between any two successive terms of a given arithmetic
sequence gives the value of d which is called the common difference.

Two sequences which are not arithmetic sequences are:

1, 2, 4, 8, . . .

−1, −1

3
, −1

9
, − 1

27
, . . .

In each case a particular term is obtained from the previous term by multiplying by a constant factor

(2 and
1

3
respectively). Each is an example of a geometric sequence or geometric progression

with the general form:

a, ar, ar2, ar3, . . .

where ‘a



Find a, d for the arithmetic sequence 3, 9, 15, . . .

Your solution

a = d =

Answer

a = 3, d = 6

Find a, r for the geometric sequence 8,
8

7
,

8

49
, . . .

Your solution

a = r =

Answer

a = 8, r =
1

7

Write out the first four terms of the geometric series with a = 4, r = −2.

Your solution

Answer

4, −8, 16, −32, . . .
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3. Series
A series is the sum of the terms of a sequence. For example, the harmonic series is

1 +
1

2
+

1

3
+

1

4
+ · · ·

and the alternating harmonic series is

1 − 1

2
+

1

3
− 1

4
+ · · ·

The summation notation
If we consider a general sequence

a1, a2, . . . , an, . . .

then the sum of the first k terms a1 + a2 + a3 + · · · + ak is concisely denoted by
k∑

p=1

ap.

That is,

a1 + a2 + a3 + · · · + ak =
k∑

p=1

ap

When we encounter the expression
k∑

p=1

ap we let the index ‘p’ in the term ap take, in turn, the values

1, 2, . . . , k and then add all these terms together. So, for example

3∑
p=1

ap = a1 + a2 + a3

7∑
p=2

ap = a2 + a3 + a4 + a5 + a6 + a7

Note that p is a dummy index; any letter could be used as the index. For example
6∑

i=1

ai, and

6∑
m=1

am each represent the same collection of terms: a1 + a2 + a3 + a4 + a5 + a6.

In order to be able to use this ‘summation notation’ we need to obtain a suitable expression for the
‘typical term’ in the series. For example, the finite series

12 + 22 + · · · + k2

may be written as
k∑

p=1

p2 since the typical term is clearly p2 in which p = 1, 2, 3, . . . , k in turn.

In the same way

1 − 1

2
+

1

3
− 1

4
+ · · · − 1

16
=

16∑
p=1

(−1)p+1

p

since an expression for the typical term in this alternating harmonic series is ap =
(−1)p+1

p
.
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4. Summing series

The arithmetic series
Consider the finite arithmetic series with 14 terms

1 + 3 + 5 + · · · + 23 + 25 + 27

A simple way of working out the value of the sum is to create a second series which is the first written
in reverse order. Thus we have two series, each with the same value A:

A = 1 + 3 + 5 + · · · + 23 + 25 + 27

and

A = 27 + 25 + 23 + · · · + 5 + 3 + 1

Now, adding the terms of these series in pairs

2A = 28 + 28 + 28 + · · · + 28 + 28 + 28 = 28 × 14 = 392 so A = 196.



As an example

1 + 3 + 5 + · · · + 27 has a = 1, d = 2, n = 14

So A = 1 + 3 + · · · + 27 =
14

2
[2 + (13)2] = 196.

The geometric series
We can also sum a general geometric series.
Let

G = a + ar + ar2 + · · · + arn−1

be a geometric series having exactly n terms. To obtain the value of G in a more convenient form
we first multiply through by the common ratio r:

rG = ar + ar2 + ar3 + · · · + arn

Now, writing the two series together:

G = a + ar + ar2 + · · · + arn−1

rG = ar + ar2 + ar3 + · · · arn−1 + arn

Subtracting the second expression from the first we see that all terms on the right-hand side cancel
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Find the sum of each of the following series:

(a) 1 + 2 + 3 + 4 + · · · + 100

(b)
1

2
+

1

6
+

1

18
+

1

54
+

1

162
+

1

486

(a) In this arithmetic series state the values of a, d, n:

Your solution

a = d = n =

Answer

a = 1, d = 1, n = 100.

Now find the sum:

Your solution

1 + 2 + 3 + · · · + 100 =

Answer

1 + 2 + 3 + · · · + 100 = 50(2 + 99) = 50(101) = 5050.

(b) In this geometric series state the values of a, r, n:

Your solution

a = r = n =

Answer

a =
1

2
, r =

1

3
, n = 6

Now find the sum:

Your solution
1

2
+

1

6
+

1

18
+

1

54
+

1

162
+

1

486
=

Answer

1

2
+

1

6
+ · · · +

1

486
=

1

2

(
1 −

(
1

3

)6
)

1 − 1

3

=
3

4

(
1 −

(
1

3

)6
)

= 0.74897

HELM (2008):
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Infinite Series
�



1. Introduction
Many of the series considered in Section 16.1 were examples of finite series in that they all involved
the summation of a finite number of terms. When the number of terms in the series increases without
bound we refer to the sum as an infinite series. Of particular concern with infinite series is whether
they are convergent or divergent. For example, the infinite series

1 + 1 + 1 + 1 + · · ·

is clearly divergent because the sum of the first n terms increases without bound as more and more
terms are taken. It is less clear as to whether the harmonic and alternating harmonic series:

1 +
1

2
+

1

3
+

1

4
+ · · · 1 − 1

2
+

1

3
− 1

4
+ · · ·

converge or diverge. Indeed you may be surprised to find that the first is divergent and the second is
convergent. What we shall do in this Section is to consider some simple convergence tests for infinite
series. Although we all have an intuitive idea as to the meaning of convergence of an infinite series
we must be more precise in our approach. We need a definition for convergence which we can apply
rigorously.

First, using an obvious extension of the notation we have used for a finite sum of terms, we denote
the infinite series:

a1 + a2 + a3 + · · · + ap + · · · by the expression
∞∑

p=1

ap

where ap is an expression for the pth term in the series. So, as examples:

1 + 2 + 3 + · · · =
∞∑

p=1

p since the pth term is ap ≡ p

12 + 22 + 32 + · · · =
∞∑

p=1

p2 since the2 since the� p

1si nce th e2
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lim
n→∞

Sn = S (say)

then we define the sum of the infinite series to be S:

S =
∞∑

p=1

ap

and we say “the series converges to S”. Another way of stating this is to say that

∞∑
p=1

ap = lim
n→∞

n∑
p=1

ap

Key Point 4

Convergence of Infinite Series

An infinite series
∞∑

p=1

ap is convergent if the sequence of partial sums

S1, S2, S3, . . . , Sk, . . . in which Sk =
k∑

p=1

ap is convergent

Divergence condition for an infinite series
An almost obvious requirement that an infinite series should be convergent is that the individual
terms in the series should get smaller and smaller. This leads to the following Key Point:



Which of the following series cannot be convergent?

(a)
1

2
+

2

3
+

3

4
+ · · ·

(b) 1 +
1

2
+

1

3
+

1

4
+ · · ·

(c) 1 − 1

2
+

1

3
− 1

4
+ · · ·

In each case, use the condition from Key Point 5:

Your solution

(a) ap = lim
p→∞

ap =

Answer

ap =
p

p + 1
limp→∞

p

p + 1
= 1

Hence series is divergent.

Your solution

(b) ap = lim
p→∞

ap =

Answer

ap =
1

p
lim

p→∞
ap = 0

So this series may be convergent. Whether it is or not requires further testing.

Your solution

(c) ap = lim
p→∞

ap =

Answer

ap =
(−1)p+1

p
lim

p→∞
ap = 0 so again this series may be convergent.

Divergence of the harmonic series
The harmonic series:

1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · ·

has a general term an =
1

n
which clearly gets smaller and smaller as n → ∞. However, surprisingly,

the series is divergent. Its divergence is demonstrated by showing that the harmonic series is greater
than another series which is obviously divergent. We do this by grouping the terms of the harmonic
series in a particular way:

1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · · ≡ 1 +

(
1

2

)
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·
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2. General tests for convergence
The techniques we have applied to analyse the harmonic and the alternating harmonic series are
‘one-off’:- they cannot be applied to infinite series in general. However, there are many tests that
can be used to determine the convergence properties of infinite series. Of the large number available
we shall only consider two such tests in detail.

The alternating series test
An alternating series is a special type of series in which the sign changes from one term to the next.
They have the form

a1 − a2 + a3 − a4 + · · ·

(in which each ai, i = 1, 2, 3, . . . is a positive number)
Examples are:

(a) 1 − 1 + 1 − 1 + 1 · · ·

(b)
1

3
− 2

4
+

3

5
− 4

6
+ · · ·

(c) 1 − 1

2
+

1

3
− 1

4
+ · · · .

For series of this type there is a simple criterion for convergence:

Key Point 6

The Alternating Series Test

The alternating series
a1 − a2 + a3 − a4 + · · ·

(in which each ai, i = 1, 2, 3, . . . are positive numbers) is convergent if and only if

• the terms continually decrease:

a1 > a2 > a3 > . . .

• the terms decrease to zero:

ap → 0 as p increases (mathematically lim
p→∞

ap = 0)

18 HELM (2008):
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Which of the following series are convergent?

(a)
∞∑

p=1

(−1)p (2p − 1)

(2p + 1)
(b)

∞∑
p=1

(−1)p+1

p2

(a) First, write out the series:

Your solution

Answer

−1

3
+

3

5
− 5

7
+ · · ·

Now examine the series for convergence:

Your solution

Answer

(2p − 1)

(2p + 1)
=

(1 − 1

2p
)

(1 +
1

2p
)

→ 1 as p increases.

Since the individual terms of the series do not converge to zero this is therefore a divergent series.

(b) Apply the procedure used in (a) to problem (b):

Your solution

Answer

This series 1 − 1

22
+

1

32
− 1

42
+ · · · is an alternating series of the form a1 − a2 + a3 − a4 + · · · in

which ap =
1

p2
. The ap sequence is a decreasing sequence since 1 >

1

22
>

1

32
> . . .

Also lim
p→∞

1

� � �

Als o 1

+



3. The ratio test
This test, which is one of the most useful and widely used convergence tests, applies only to series
of positive terms.

Key Point 7

The Ratio Test

Let
∞∑

p=1

ap be a series of positive terms such that, as p increases, the limit of
ap+1

ap

equals

a number λ. That is lim
p→∞

ap+1

ap

= λ.

It can be shown that:

• if λ > 1, then
∞∑

p=1

ap diverges

• if λ < 1, then
∞∑

p=1

ap converges

• if λ = 1, then
∞∑

p=1

ap
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Example 1
Use the ratio test to examine the convergence of the series

(a) 1 +
1

2!
+

1

3!
+

1

4!
+ · · · (b) 1 + x + x2 + x3 + · · ·

Solution

(a) The general term in this series is
1

p!
i.e.

1 +
1

2!
+

1

3!
+ · · · =

∞∑
p=1

1

p!
ap =

1

p!
∴ ap+1 =

1

(p + 1)!

and the ratio

ap+1

ap

=
p!

(p + 1)!
=

p(p − 1) . . . (3)(2)(1)

(p + 1)p(p − 1) . . . (3)(2)(1)
=

1

(p + 1)

∴ lim
p→∞

ap+1

ap

= lim
p→∞

1

(p + 1)
= 0

Since 0 < 1 the series is convergent. In fact, it will be easily shown, using the t!
+

(p



Use the ratio test to examine the convergence of the series:

1

ln 3
+

8

(ln 3)2
+

27

(ln 3)3
+ · · ·

First, find the general term of the series:

Your solution

ap =

Answer

1

ln 3
+

8

(ln 3)2
+ · · · =

∞∑
p=1

p3

(ln 3)p
so ap =

p3

(ln 3)p

Now find ap+1:

Your solution

ap+1 =

Answer

ap+1 =
(p + 1)3

(ln 3)p+1

Finally, obtain lim
p→∞

ap+1

ap

:

Your solution

ap+1

ap

= ∴ lim
p→∞

ap+1

ap

=

Answer
ap+1

ap

=

(
p + 1

p

)3
1

(ln 3)
. Now

(
p + 1

p

)3

=

(
1 +

1

p

)3

→ 1 as p increases

∴ lim
p→∞

ap+1

ap

=
1

(ln 3)
< 1

Hence this is a convergent series.

Note that in all of these Examples and Tasks we have decided upon the convergence or divergence of
various series; we have not been able to use the tests to discover what actual number the convergent
series converges to.

22 HELM (2008):
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4. Absolute and conditional convergence
The ratio test applies to series of positive terms. Indeed this is true of many related tests for
convergence. However, as we have seen, not all series are series of positive terms. To apply the ratio
test such series must first be converted into series of positive terms. This is easily done. Consider

two series
∞∑

p=1

ap and
∞∑

p=1

|ap|. The latter series, obviously directly related to the first, is a series of

positive terms.

Using imprecise language, it is harder for the second series to converge than it is for the first, since,
in the first, some of the terms may be negative and cancel out part of the contribution from the
positive terms. No such cancellations can take place in the second series since they are all positive

terms. Thus it is plausible that if
∞



Show that the series − 1
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Exercises

1. Which of the following alternating series are convergent?

(a)
∞∑

p=1

(−1)p ln(3)

p
(b)

∞∑
p=1

(−1)p+1

p2 + 1
(c)

∞∑
p=1

p sin(2p + 1)
π

2
(p + 100)

2. Use the ratio test to examine the convergence of the series:

(a)
∞∑

p=1

e4

(2p + 1)p+1
(b)

∞∑
p=1

p3

p!
(c)

∞∑
p=1

1
√

p

(d)
∞∑

p=1

1

(0.3)p
(e)

∞∑
p=1

(−1)p+1

3p

3. For what values of x are the following series absolutely convergent?

(a)
∞∑

p=1

(−1)pxp

p
(b)

∞∑
p=1

(−1)pxp

p!



The Binomial Series
�
�
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�16.3

Introduction
In this Section we examine an important example of an infinite series, the binomial series:

1 + px +
p(p − 1)

2!
x2 +

p(p − 1)(p − 2)

3!
x3 + · · ·

We show that this series is only convergent if |x| < 1 and that in this case the series sums to the
value (1 + x)p. As a special case of the binomial series we consider the situation when p is a positive
integer n. In this case the infinite series reduces to a finite series and we obtain, by replacing x with
b

a
, the binomial theorem:

(b + a)n = bn + nbn−1a +
n(n − 1)

2!
bn−2a2 + · · · + an.

Finally, we use the binomial series to obtain various polynomial expressions for (1 + x)p when x is
‘small’.

'

&

$

%
Prerequisites

Before starting this Section you should . . .

• understand the factorial notation

• have knowledge of the ratio test for
convergence of infinite series.

• understand the use of inequalities'

&

$

%
Learning Outcomes

On completion you should be able to . . .

•
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1. The binomial series
A very important infinite series which occurs often in applications and in algebra has the form:

1 + px +
p(p − 1)

2!
x2 +

p(p − 1)(p − 2)

3!
x3 + · · ·



Key Point 10

The Binomial Theorem

If n is a positive integer then the expansion of (a + b) raised to the power n is given by:

(a + b)n = an + nan−1b +
n(n − 1)

2!
an−2b2 + · · · + bn

This is known as the binomial theorem.

Use the binomial theorem to obtain (a) (1 + x)7 (b) (a + b)4

(a) Here n = 7:

Your solution

(1 + x)7 =

Answer

(1 + x)7 = 1 + 7x + 21x2 + 35x3 + 35x4 + 21x5 + 7x6 + x7

(b) Here n = 4:

Your solution

(a + b)4 =

Answer

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4.

Given that x is so small that powers of x3 and above may be ignored in comparison
to lower order terms, find a quadratic approximation of (1 − x)

1
2 and check5(quad87comp)-1(a)28(ris)-1(o)1(n)]TJ -55 Tf 6.652 0 Td[())]TJ/F26 E]TJ/Fm27 11.955 Tf h 0 0 1 0 -1.395 cm
q
[]0 d
0 J
0.398 w
01.955 T0 dcuracdnml50 1E
[]0 d97 Tffm 1 0 -76 11.761 0y2 h 46 11.7i2 4.33td[(is)-3r
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Answer

(1 − x)
1
2 = 1 − 1

2
x +

1
2

(− 1
2

)

2
x2 −

1
2(− 1

2)(− 3
2)

6
x3 + · · ·

Now obtain the quadratic approximation:

Your solution

(1 − x)
1
2 '

Answer

(1 − x)
1
2 ' 1 − 1

2
x − 1

8
x2

Now check on the validity of the approximation by choosing x = 0.1:

Your solution

Answer
On the left-hand side we have

(0.9)
1
2 = 0.94868 to 5 d.p. obtained by calculator

whereas, using the quadratic expansion:

(0.9)
1
2 ≈ 1 − 1

2
(0.1) − 1

8
(0.1)2 = 1 − 0.05 − (0.00125) = 0.94875.

so the error is only 0.00007.

What we have done in this last Task is to replace (or approximate) the function (1−x)
1
2 by the simpler

(polynomial) function 1− 1

2
x− 1

8
x2 which is reasonable provided x is very small. This approximation

is well illustrated geometrically by drawing the curves y = (1−x)
1
2 and y = 1− 1

2
x− 1

8
x2. The two

curves coincide when x is ‘small’. See Figure 2:

x

y

Figure 2

HELM (2008):
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Obtain a cubic approximation of
1

(2 + x)
. Check your approximation for accuracy

using appropriate values of x.

First write the term
1

(2 + x)
in a form suitable for the binomial series (refer to Key Point 9):

Your solution
1

(2 + x)
=

Answer
1

2 + x
=

1

2
(

1 +
x

2

) =
1

2

(
1 +

x

2

)−1

Now expand using the binomial series with p = −1 and
x

2
instead of x, to include terms up to x3:

Your solution
1

2

(
1 +

x

2

)−1

=

Answer

1

2

(
1 +

x

2

)−1

=
1

2

{
1 + (−1)

x

2
+

(−1)(−2)

2!

(x

2

)2

+
(−1)(−2)(−3)

3!

(x

2

)3
}

=
1

2
− x

4
+

x2

8
− x3

16

State the range of x for which the binomial series of
(

1 +
x

2

)−1

is valid:

Your solution

The series is valid if

Answer

valid as long as
∣∣∣x

2

∣∣∣ < 1 i.e. |x| < 2 or −2 < x < 2

30 HELM (2008):
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Power Series
�
�

�
�16.4

Introduction
In this Section we consider power series. These are examples of infinite series where each term
contains a variable, x, raised to a positive integer power. We use the ratio test to obtain the radius
of convergence R, of the power series and state the important result that the series is absolutely
convergent if |x| < R, divergent if |x| > R and may or may not be convergent if x = ±R. Finally,
we extend the work to apply to general power series when the variable x is replaced by (x− x0).
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Prerequisites

Before starting this Section you should . . .

• have knowledge of infinite series and of the
ratio test

• have knowledge of inequalities and of the
factorial notation.'
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Learning Outcomes

On completion you should be able to . . .

• explain what a power series is

• obtain the radius of convergence for a power
series

• explain what a general power series is
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Key Point 11

Convergence of Power Series

For a power series
∞∑

p=0

bpx
p with radius of convergence R then

• the series converges absolutely if |x| < R

• the series diverges if |x| > R

• the series may be convergent or divergent at x = ±R

x

divergentconvergent

−R R0

div

ergen

For any particular power series
∞∑

p=0

bpx
p the value of R can be obtained using the ratio test. We

know, from the ratio test that
∞∑

p=0

bpx
p is absolutely convergent if

lim
p→∞

|bp+1x
p+1|

|bpxp|
= lim

p→∞

∣∣∣∣bp+1

bp

∣∣∣∣ |x| < 1 implying |x| < lim
p→∞

∣∣∣∣ bp

bp+1

∣∣∣∣ and so R = lim
p→∞

∣∣∣∣ bp

bp+1

∣∣∣∣ .

Example 2
(a) Find the radius of convergence of the series

1 +
x

2
+

x2

3
+

x3

4
+ · · ·

(b) Investigate what happens at the end-points x = −1, x = +1 of the region of
absolute convergence.
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Solution

(a) Here 1 +
x

2
+

x2

3
+

x3

4
+ · · · =

∞∑
p=0

xp

p + 1

so

bp =
1

p + 1
∴ bp+1 =

1

p + 2

In this case,

R = lim
p→∞

∣∣∣∣p + 2

p + 1

∣∣∣∣ = 1

so the given series is absolutely convergent if |x| < 1 and is divergent if |x| > 1.

(b) At x = +1 the series is 1 + 1
2

+ 1
3

+ · · · which is divergent (the harmonic series). However, at
x = −1 the series is 1− 1

2
+ 1

3
− 1

4
+ · · · which is convergent (the alternating harmonic series).

Finally, therefore, the series

1 +
x

2
+

x2

3
+

x3

4
+ · · ·

is convergent if −1 ≤ x < 1.

Find the range of values of x for which the following power series converges:

1 +
x

3
+

x2

32
+

x3

33
+ · · ·

First find the coefficient of xp:

Your solution

bp =

Answer

bp =
1

3p

Now find R, the radius of convergence:

Your solution

R = lim
p→∞

∣∣∣∣ bp

bp+1

∣∣∣∣ =

Answer

R = lim
p→∞

∣∣∣∣ bp

bp+1

∣∣∣∣ = lim
p→∞

∣∣∣∣3p+1

3p

∣∣∣∣ = lim
p→∞

(3) = 3.

When x = ±3 the series is clearly divergent. Hence the series is convergent only if −3 < x < 3.
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3. Properties of power series
Let P1 and P2 represent two power series with radii of convergence R1 and R2 respectively. We can
combine P1 and P2 together by addition and multiplication. We find the following properties:

Key Point 12

If P1 and P2 are power series with respective radii of convergence R1 and R2 then the sum (P1 +P2)
and the product (P1P2) are each power series with the radius of convergence being the smaller of
R1 and R2.

Power series can also be differentiated and integrated on a term by term basis:

Key Point 13

If P1 is a power series with radius of convergence R1 then

d
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Using the known result that

1

1 + x
= 1− x + x2 − x3 + · · · |x| < 1x1G6s[(1)]TJ/F26 11.95568 8.2 



4. General power series
A general power series has the form

b0 + b1(x− x0) + b2(x− x0)
2 + · · · =

∞∑
p=0

bp(x− x0)
p

Exactly the same considerations apply to this general power series as apply to the ‘special’ series
∞∑

p=0

bpx
p except that the variable x is replaced by (x−x0). The radius of convergence of the general

series is obtained in the same way:

R = lim
p→∞

∣∣∣∣ bp

bp+1

∣∣∣∣
and the interval of convergence is now shifted to have centre at x = x0 (see Figure 4 below). The
series is absolutely convergent if |x−x0| < R, diverges if |x−x0| > R and may or may not converge
if |x− x0| = R.

Figure 4

Find the radius of convergence of the general power series

1− (x− 1) + (x− 1)2 − (x− 1)3 + · · ·

First find an expression for the general term:

Your solution

1− (x− 1) + (x− 1)2 − (x− 1)3 + · · · =
∞∑

p=0

Answer
∞∑

p=0

(x− 1)p(−1)p so bp = (−1)p

Now obtain the radius of convergence:

Your solution

lim
p→∞∣∣
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Finally, decide on the convergence at |x− 1| = 1 (i.e. at x− 1 = −1 and x− 1 = 1 i.e. x = 0 and
x = 2):



Maclaurin and Taylor
Series

�
�

�
�16.5

Introduction
In this Section we examine how functions may be expressed in terms of power series. This is an
extremely useful way of expressing a function since (as we shall see) we can then replace ‘complicated’
functions in terms of ‘simple’ polynomials. The only requirement (of any significance) is that the
‘complicated’ function should be smooth; this means that at a point of interest, it must be possible
to differentiate the function as often as we please.

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• have knowledge of power series and of the
ratio test

• be able to differentiate simple functions

• be familiar with the rules for combining
power series'

&

$

%

Learning Outcomes
On completion you should be able to . . .

• find the Maclaurin and Taylor series
expansions of given functions

• find Maclaurin expansions of functions by
combining known power series together

• find Maclaurin expansions by using
differentiation and integration
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1. Maclaurin and Taylor series
As we shall see, many functions can be represented by power series. In fact we have already seen in
earlier Sections examples of such a representation:

1

1 − x
= 1 + x + x2 + · · · |x| < 1

ln(1 + x) = x − x2

2
+

x3



2. The Maclaurin series
Consider a function f(x) which can be differentiated at x = 0 as often as we please. For example
ex, cos x, sin x would fit into this category but |x| would not.
Let us assume that f(x) can be represented by a power series in x:

f(x) = b0 + b1x + b2x2 + b3x3 + b4x4 + · · · =
∞∑

p=0

bpx
p

where b0, b1, b2, . . . are constants to be determined.

If we substitute x = 0 then, clearly f(0) = b0

The other constants can be determined by further differentiating and, on each differentiation, sub-
stituting x = 0. For example, differentiating once:

f ′(x) = 0 + b1 + 2b2x + 3b3x2 + 4b4x3 + · · ·

so, putting x = 0, we have f ′(0) = b1.
Continuing to differentiate:

f ′′(x) = 0 + 2b2 + 3(2)b3x + 4(3)b4x2 + · · ·

so

f ′′(0) = 2b2 or b2 =
1
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Example 4
Find the Maclaurin expansion of cos x.

Solution

Here f(x) = cos x and, differentiating a number of times:

f(x) = cos x, f ′(x) = − sin x, f ′′(x) = − cos x, f ′′′(x) = sin x etc.

Evaluating each of these at x = 0:

f(0) = 1, f ′(0) = 0, f ′′(0) = −1, f ′′′(0) = 0 etc.

Substituting into f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) + · · · , gives:

cos x = 1 − x2

2!
+

x4

4!
− x6

6!
+ · · ·

The reader should confirm (by finding the radius of convergence) that this series is convergent for
all values of x. The geometrical approximation to cos x by the first few terms of its Maclaurin series
are shown in Figure 6.

Figure 6: Linear, quadratic and cubic approximations to cos x

Find the Maclaurin expansion of ln(1 + x).

(Note that we cannot find a Maclaurin expansion of the function ln x since ln x
does not exist at x = 0 and so cannot be differentiated at x = 0.)

Find the first four derivatives of f(x) = ln(1 + x):



Answer

f ′(x) =
1

1 + x
, f ′′(x) =

−1

(1 + x)2
, f ′′′(x) =

2

(1 + x)3
,

generally: f (n)(x) =
(−1)n+1(n − 1)!

(1 + x)n

Now obtain f(0), f ′(0), f ′′(0), f ′′′(0):

Your solution

f(0) = f ′(0) = f ′′(0) = f ′′′(0) =

Answer
f(0) = 0 f ′(0) = 1, f ′′(0) = −1, f ′′′(0) = 2,

generally: f (n)(0) = (−1)n+1(n − 1)!

Hence, obtain the Maclaurin expansion of ln(1 + x):

Your solution

ln(1 + x) =

Answer

ln(1 + x) = x − x2

2
+

x3

++8[]0 d
0 J
0.398 w
0 0.199 m
494.369 0.199 l
S
Q
1 0 0 1 0 -47.881 cm217[]0 d
0 J
0.398 w
0.199 0 m
0.199 47.881 l
217[1 0 0 1 -54 -525.042 Td53T
/F42 11.955 Tf 60.376 481.913 l
468our solution

f
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Note that when x = 1 ln 2 = 1 − 1

2
+

1

3
− 1

4
· · · so the alternating harmonic series converges to

ln 2 ' 0.693, as stated in Section 16.2, page 17.

The Maclaurin expansion of a product of two functions: f(x)g(x) is obtained by multiplying together
the Maclaurin expansions of f(x) and of g(x) and collecting like terms together. The product series
will have a radius of convergence equal to the smaller of the two separate radii of convergence.

Example 5
Find the Maclaurin expansion of ex ln(1 + x).

Solution

Here, instead of finding the derivatives of f(x) = ex ln(1+x), we can more simply multiply together
the Maclaurin expansions for ex and ln(1 + x) which we already know:

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · all x

and

ln(1 + x) = x − x2

2
+

x3

3
+ · · · − 1 < x ≤ 1

The resulting power series will only be convergent if −1 < x ≤ 1. Multiplying:

ex ln(1 + x) =

(
1 + x +

x2

2!
+

x3

3!
+ · · ·

) (
x − x2

2
+

x3

3
+ · · ·

)

= x − x2

2
+

x3

3
− x4

4
+ · · ·

+ x2 − x3

2
+

x4

3
+ · · ·

+
x3

2
− x4

4
· · ·

+
x4

6
· · ·

= x +
x2

2
+

x3

3
+

3x5

40
+ · · · − 1 < x ≤ 1

(You must take care not to miss relevant terms when carrying through the multiplication.)
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Find the Maclaurin expansion of cos2 x up to powers of x4. Hence write down
the expansion of sin2 x to powers of x6.

First, write down the expansion of cos x:

Your solution

cos x =

Answer

cos x = 1 − x2

2!
+

x4

4!
+ · · ·

Now, by multiplication, find the expansion of cos2 x:

Your solution

cos2 x =

Answer

cos2 x =

(
1 − x2

2!
+

x4

4!
· · ·

) (
1 − x2

2!
+

x4

4!
· · ·

)
= (1 − x2

2!
+

x4

4!
· · · ) + (−x2

2!
+

x4

4
· · · ) + (

x4

4!
· · · ) + · · · = 1 − x2 +

x4

3
− 2x6

45
· · ·

Now obtain the expansion of sin2 x using a suitable trigonometric identity:

Your solution

sin2 x =

Answer

sin2 x = 1 −

4!
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Example 6
Find the Maclaurin expansion of tanh x up to powers of x5.

Solution

The first two derivatives of f(x) = tanh x are

f ′(x) = sech2x f ′′(x) = −2sech2x tanh x f ′′′(x) = 4sech2x tanh2 x − 2sech4x · · ·

giving f(0) = 0, f ′(0) − 1, f ′′(0) = 0 f ′′′(0) = −2 · · ·

This leads directly to the Maclaurin expansion as tanh x = 1 − 1

3
x3 +

2

15
x5 · · ·

Example 7
The relationship between the wavelength, L, the wave period, T , and the water

depth, d, for a surface wave in water is given by:



3. Differentiation of Maclaurin series
We have already noted that, by the binomial series,

1

1 − x
= 1 + x + x2 + x3 + · · · |x| < 1

Thus, with x replaced by −x

1

1 + x
= 1 − x + x2 − x3 + · · · |x| < 1

We have previously obtained the Maclaurin expansion of ln(1 + x):

ln(1 + x) = x − x2

2
+

x3

3
− x4

4
+ · · · − 1 < x ≤ 1

Now, we differentiate both sides with respect to x:

1

1 + x
= 1 − x + x2 − x3 + · · ·

This result matches that found from the binomial series and demonstrates that the Maclaurin ex-
pansion of a function f(x) may be differentiated term by term to give a series which will be the

Maclaurin expansion of
df

dx
.

As we noted in Section 16.4 the derived series will have the same radius of convergence as the
original series.

Find the Maclaurin expansion of (1 − x)−3 and state its radius of convergence.

First write down the expansion of (1 − x)−1:

Your solution
1

1 − x

Answer
1

1 − x
= 1 + x + x2 + · · · |x| < 1

Now, by differentiation, obtain the expansion of
1

(1 − x)2
:

Your solution
1

(1 − x)2
=

d

dx

(
1

1 − x

)
=

Answer
1

(1 − x)2
=

d�dTJ/F15 11.955 Tf 11.123 25. Td[(�) +x+ x2 + · · ·) = x + x2 + x
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Differentiate again to obtain the expansion of (1 − x)−3:

Your solution
1

(1 − x)3
=

1

2

d

dx

(
1

(1 − x)2

)
=

1

2
[ ]

=

Answer
1

(1 − x)3
=

1

2

d

dx

(
1

(1 − x)2

)
=

1

2
[2 + 6x + 12x2 + 20x3 + · · · ] = 1+3x +6x2 +10x3 + · · ·

Finally state its radius of convergence:

Your solution

Answer
The final series: 1+3x+6x2 +10x3 + · · · has radius of convergence R = 1 since the original series

has this radius of convergence. This can also be found directly using the formula R = lim
n→∞

∣∣∣∣ bn

bn+1

∣∣∣∣
and using the fact that the coefficient of the nth term is bn =

1

2
n(n + 1).

4. The Taylor series
The Taylor series is a generalisation of the Maclaurin series being a power series developed in powers
of (x − x0)
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Exercises

1. Show that the series obtained in the last Task is convergent if |x − 2| < 1.

2.


